Evolutionary attribute ordering in Bayesian networks for predicting the metabolic syndrome

نویسندگان

  • Han-Saem Park
  • Sung-Bae Cho
چکیده

The metabolic syndrome is a set of risk factors that include abdominal obesity, insulin resistance, dyslipidemia and hypertension. It has affected around 25% of adults in the US and become a serious problem in Asian countries recently due to the change in dietary habit and life style. On the other hand, Bayesian networks that are the models to solve the problems of uncertainty provide a robust and transparent formalism for probabilistic modeling, so they have been used as a method for diagnostic or prognostic model in medical domain. Since the K2 algorithm, a well-known algorithm for Bayesian networks structure learning, is influenced by an input order of the attributes, an optimization of BN attribute ordering has been studied as a research issue. This paper proposes a novel ordering optimization method using a genetic algorithm based on medical expert knowledge in order to solve this problem. For experiments, we use the dataset examined twice in 1993 and 1995 in Yonchon County of Korea. It has 18 attributes of 1193 subjects participated in both surveys. Using this dataset, we make the prognostic model of the metabolic syndrome using Bayesian networks with an optimized ordering by evolutionary approach. Through an ordering optimization, the prognostic model of higher performance is constructed, and the optimized Bayesian network model by the proposed method outperforms the conventional BN model as well as neural networks and k-nearest neighbors. Finally, we present the application program using the prognostic model of the metabolic syndrome in order to show the usefulness of the proposed method. 2011 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Attribute Ordering Optimization in Bayesian Networks for Prognostic Modeling of the Metabolic Syndrome

The metabolic syndrome has become a significant problem in Asian countries recently due to the change in dietary habit and life style. Bayesian networks provide a robust formalism for probabilistic modeling, so they have been used as a method for prognostic model in medical domain. Since K2 algorithm is influenced by an input order of the attributes, optimization of BN attribute ordering is stu...

متن کامل

Learning Bayesian Network Structure Using Genetic Algorithm with Consideration of the Node Ordering via Principal Component Analysis

‎The most challenging task in dealing with Bayesian networks is learning their structure‎. ‎Two classical approaches are often used for learning Bayesian network structure;‎ ‎Constraint-Based method and Score-and-Search-Based one‎. ‎But neither the first nor the second one are completely satisfactory‎. ‎Therefore the heuristic search such as Genetic Alg...

متن کامل

 Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization

A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...

متن کامل

Determination of Obesity Indices Cut-Off Points for Predicting Metabolic Syndrome in Inactive College Students

Objective: The present this study aimed to determine the proper cut-off points for waist circumference (WC), Waist to height ratio (WHtR) and body mass index (BMI) for early predicting of metabolic syndrome among inactive college students. Materials and Methods: In this cross-sectional study, 126 males (age 20.33±1.71) and 63 females (age 20.36±1.72) with inactive lifestyle parti...

متن کامل

A Note on Evolutionary Rate Estimation in Bayesian Evolutionary Analysis: Focus on Pathogens

Bayesian evolutionary analysis provide a statistically sound and flexible framework for estimation of evolutionary parameters. In this method, posterior estimates of evolutionary rate (μ) are derived by combining evolutionary information in the data with researcher’s prior knowledge about the true value of μ. Nucleotide sequence samples of fast evolving pathogens that are taken at d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2012